Scientists identify unique breast cancer cells that control their ability to proliferate and colonize the lungs: These cells can also trigger their own dormancy, allowing them to evade certain therapies

Scientists from The Tisch Cancer Institute have uncovered a mechanism by which certain breast cancer cells regulate their own metastases, fuel dissemination from the original tumor site, and determine routes to invade distant organs such as the lungs, according to a study published in Cell Reports in September.

For the first time, scientists have identified a type of cancer cell in triple negative breast tumors, which is highly efficient in invading and colonizing distant organs but slow their growth upon colonization. These cells have a hallmark of slowed production of a protein called srGAP1, which is usually attributed to cancer growth.

Scientists also found in animal models that these unique cells trigger a phenomenon that keeps them in a dormant state in distant organs such as the lungs. This is an important finding because cancer cells have to efficiently survive at distant sites, and staying in this “asleep” existence allows these cells to evade therapies that target cancer cells’ normal rapid growth. Cells that are missed could later become metastatic.

“Our findings emphasize the importance of considering phenotypic changes that could occur when treating cancer cells with therapeutic strategies that target proliferating cells such as chemotherapy,” said Jose Javier Bravo-Cordero, PhD, Associate Professor of Medicine (Hematology and Medical Oncology) at The Tisch Cancer Institute at Mount Sinai. “While these treatment regimens target dividing cells, they may also be selecting for more invasive tumor cells. Our studies suggest that more selective therapeutic strategies combining treatments against both dividing cells and invasive dormant cells may be necessary to prevent metastatic disease.”

To conduct this study, researchers used high-resolution in vivo imaging to visualize extravasation, the process of tumor cells exiting the blood vessels to enter a target tissue. This event was observed in real time, revealing with unprecedented detail the early stages of tumor extravasation. The microscopy studies revealed that after these tumor cells invade the lungs, they enter into a dormant state by secreting the protein TGF-β2. The studies also showed that interfering with that protein can block tumor cell invasion into the lungs.

Partners who contributed to this work include Stony Brook University, University of Illinois at Chicago, Janelia Research Campus at Howard Hughes Medical Institute and University of California at Berkeley.

Story Source:

Materials provided by The Mount Sinai Hospital / Mount Sinai School of Medicine. Note: Content may be edited for style and length.

For all the latest health News Click Here 

Read original article here

Denial of responsibility! TechAI is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.