Immune response to parasitic worms

According to the World Health Organization, more than 1 billion people are infected with parasitic helminths worldwide, but the prevention and treatment of helminth infection remain challenging. Research led by the University of Minnesota Medical School looked at if exposure to pathogens, in particular helminths, can stimulate the immune system and reduce predisposition for inflammatory bowel disease (IBD).

“We know that intestinal epithelial cells are first responders to invading gut parasites, through secreting cytokines that alarms and guides immune cells for worm expulsion,” said Hai-Bin Ruan, PhD, an assistant professor at the U of M Medical School. “We found that a unique glycosylation within epithelial cells, termed as O-GlcNAcylation, can be activated during helminth infections to orchestrate alarmin secretion and facilitate anti-helminth immune responses.”

There is a growing interest in the use of helminth therapy for IBD, but clinical data have been inconclusive and the direct use of helminths has obvious safety and efficacy concerns. A greater understanding of host defense mechanisms against helminths is essential for the development of effective and safe treatments for intestinal infections and inflammation.

Published in Immunity, the study found that:

  • O-GlcNAc glycosylation modifies and activates the STAT6 protein, a master transcriptional regulator of the type 2 anti-helminth immunity;
  • STAT6 O-GlcNAcylation in epithelial cells alarms immune cells by instructing intestinal stem cells to make more “tuft cells” and epithelial cells to form membrane pores (composed of GSDMC proteins) to meditate alarmin cytokines; and,
  • GSDMC is induced and activated in IBD preclinical models.

“Our study established a novel post translational regulatory switch to turn on epithelial alarmin responses to fight helminth infections,” said Ruan.

The research team plans to investigate how O-GlcNAc glycosylation is activated by helminth infections and how GSDMC protein is cleaved to form active membrane pores in human IBD in the future.

The study was funded by the National Institutes of Health (NIH/NIAID) and includes collaborators from Nanjing University, Xinxiang University, and University of Washington.

Story Source:

Materials provided by University of Minnesota Medical School. Original written by Kat Dodge. Note: Content may be edited for style and length.

For all the latest health News Click Here 

Read original article here

Denial of responsibility! TechAI is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.