Electrical pulses to the back of the neck found to restore breathing after drug use

Breathing difficulties are the main cause of death following opioid use. In the UK, the number of adults entering treatment for opioid use was 140,863 in 2020/21* and opioid use remains a significant cause of premature death, contributing to 3,726 drug-related deaths last year1. Opioid misuse causes death by supressing respiratory activity.

New research, published in The Journal of Physiology, points to a novel treatment for respiratory depression associated with opioid use that administers electrical pulses to the back of the neck, helping patients regain respiratory control following high dosage opioid use. This could offer an alternative to pharmacological treatments, which can cause withdrawal symptoms, heart problems and can negatively affect the central nervous system.

Breathing problems can occur after opioid use or post-operative complications from anaesthesia because opioids desensitise the brain stem to rises in carbon dioxide. This can cause respiratory failure, which can be fatal. Current treatments, such as manual lung inflation and medication, can work in the short term to combat breathing problems following opioid use, but getting patients to breathe independently remains a challenge. Therefore, this new research, which administers epidural electrical stimulation (EES) offers an alternative, non-pharmacological treatment.

EES administered at the cervical spinal cord, which is located at the back of the neck, activates a network of neurons in the brainstem that stimulates and coordinates respiratory muscles and improves the rate and depth of breathing.

Researchers from the David Geffen School of Medicine at the University of California (UCLA), Los Angeles, US, targeted sensory-motor circuits in the cervical spinal cord of 18 patients with degenerative spine diseases who were anesthetised for surgical treatment. They delivered 30 Hertz of EES to the cervical spinal cord continuously for no longer than 90 seconds.

They found that short periods of continuous low-intensity EES not only increased the volume of breath but also actively controlled the frequency and rhythm during opioid-induced breathing problems. The rhythmic breathing pattern was sustained briefly after the EES stopped in the presence of high-dose opioids.

Dr. Daniel Lu, senior author and UCLA professor and vice chair of neurosurgery, said:

“Our results provide proof of principle that cervical EES could improve respiration following opioid use. We can compare the human body to a car, our goal is to jump start the body so it can run by itself without periodic pushes. We hope to use EES to provide novel approaches to restore breathing for healthcare providers as we are now using defibrillation devices for restoring cardiac activities.”

Future trials in humans with larger cohorts will be conducted to further assess the practical application and impact of EES to determine whether EES can alleviate or reduce the need for ventilator support in acute pathological conditions such as OIRD, stroke, and traumatic brain, brain stem or spinal cord injury. Experimental studies in mice will be carried out to further investigate the role specific neurons play in response to EES.

* Adult substance misuse treatment statistics 2020 to 2021: report (November 2021)

Story Source:

Materials provided by The Physiological Society. Note: Content may be edited for style and length.

For all the latest health News Click Here 

Read original article here

Denial of responsibility! TechAI is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.